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Abstract 

This paper introduces a new methodology to improve land surface model skill by 

merging different available precipitation data sets given an accurate land surface parameter 

ground truth is available. Precipitation datasets are merged with the objective of improving 

terrestrial water and energy cycle simulation skill, unlike most common methods where the 

merging skills are evaluated by comparing the results with gauge data or a selected reference 

data. The optimal merging method developed in this study minimizes the simulated land surface 

parameter (soil moisture, temperature, etc.) errors using the Noah land surface model with the 

Nelder-Mead (Downhill Simplex) method. While improving the simulation skills, this method 

also impedes the adverse impacts of single-source precipitation data errors. Analysis has 

indicated that the results from the optimally merged precipitation product have fewer errors in 

other land surface states and fluxes such as evapotranspiration (ET), discharge (R), and skin 

temperature (T) than simulation results obtained by forcing the model using the precipitation 

products individually. It is also found that using this method the true knowledge of soil moisture 

information minimized land surface modeling errors better than the knowledge of other land 

surface parameters (ET, R, and T). Results have also shown that although the methodology does 

not have the true precipitation information, it has associated heavier weights to the precipitation 

product that has similar intensity, amount, and frequency as the true precipitation.
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1. Introduction 

Precipitation and radiation are the most important input forcings driving Land Surface 

Models (LSM), whereas land cover, soil properties, and topography are secondary effects that 

influence the partitioning of these forcings between canopy interception, soil layers, runoff, and 

atmosphere (Wei et al. 2008). Knowledge of temporal and spatial distributions of precipitation is 

crucial for producing realistic land surface simulations that enhance our understanding of 

hydrologic and atmospheric cycles. There are three main methods employed to acquire the 

precipitation information: ground observations (gauges and radars), numerical model 

simulations, and satellite-based techniques.  

Gauges are regarded as the most reliable direct precipitation estimation method. 

However, they are unable to sample large-area spatial means due to sparse or non-existing spatial 

coverage; are often subject to wind-induced undercatch; and have significant cold-season 

precipitation observation issues. Additionally, gauges tend to be located at low elevation and in 

plain areas where precipitation is underestimated by missing the orographic-induced systems at 

higher elevations (Nijsen et al. 2001; Fekete et al. 2004). 

Ground Based Radar (GBR) is a promising way to understand spatial precipitation 

characteristics, but the accuracy of radar-based precipitation estimates depends on numerous 

factors including the Z-R relationship, terrain blockage, target distance from the radar, spurious 

echoes resulting from anomalous propagation of the radar beam, bright band contamination, and 

scatter from ground clutter targets.  

Precipitation forecasts by numerical models are not observed data, although they may 

assimilate observations such as radiosonde profiles, cloudiness, satellite temperatures, and so on. 

Numerical models may produce high-quality precipitation distributions in their analyses and 
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short-range forecasts but less-skillful simulations over tropical areas (Arpe 1991; Mechoso et al. 

2006). Dependent on the reality of the model physics, short-range forecasts may have some skill 

and smaller errors than satellite-based estimates during cool seasons at higher latitudes (Ebert 

et al. 2007); however, there are significant errors, particularly with convective precipitation 

(Dai 2006).  

Satellite-born precipitation estimates make use of VIS/IR and microwave portion of the 

spectra with either active or passive instruments. VIS/IR-based observations, usually from 

geostationary platforms, have the frequent revisiting capability that measures the cloud top 

temperature. However, VIS/IR-only-based precipitation products are biased significantly over 

areas with warm cloud top and over tropic and subtropic land areas where thick cirrus and multi-

layered clouds systems are still a challenge. Microwave-based products, from low earth orbiting 

(LEO) satellites, have limited temporal and spatial resolutions due to the technical inadequacy 

that hinder the deployment of microwave instruments on geostationary platforms. Microwave-

based estimates are generated using emitted or scattered radiation sourced from raindrops or 

earth surface, respectively. Emission- or scatter-based algorithms make use of emitted radiation 

by raindrops (land surface) over ocean (land) to estimate the precipitation amounts. Passive 

microwave-based products are good at detecting strong convective precipitation events but tend 

to miss shallow and warm rains (Tian et al. 2007). 

However, owing to the unique ability to cover the globe, satellite-based precipitation 

products are highly desirable in hydrologic and atmospheric applications. Many LEO satellites 

have been launched over the last two decades; but not with optimal orbits, revisiting times, 

and/or spatial resolutions for monitoring precipitation at global scales. Many methods have been 

employed to merge satellite information into gridded precipitation products while taking 
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advantage of their skills and minimizing their limitations (CMAP, Xie, and Arkin 1997; NRL, 

Turk and Miller 2005; PERSIANN, Sorooshian et al. 2000; GPCP 1DD, Huffman et al. 2001; 

GPCP v2, Adler et al. 2003; PMIR, Kidd et al. 2003; GPCP Pentad, Xie et al. 2003; CMORPH, 

Joyce et al. 2004; TRMM TMPA, Huffman et al. 2007; GSMaP, Kubota et al. 2007; CHOMPS, 

Joseph et al. 2009).  

Each of these datasets has its own advantages and disadvantages. To benefit from the 

strengths of each, it is crucial to delineate the weaknesses in terms of land modeling skill rather 

than comparison with limited gauge observations. There have been several studies focused on 

examining the error characteristics of precipitation products in terms of land surface modeling 

(Gottschalck et al. 2005; Tian et al. 2007; Turk et al. 2009). The need of methods to combine 

precipitation-related information from models, satellite, radars, and gauges is emphasized by 

Ebert et al. (2007). However, there has been no study that directly attempts to assign relative 

weights to different precipitation products with an autonomous procedure, wherein a higher 

weight is given to products with more hydrologically-relevant information.  

This study has optimally merged different precipitation products and dynamically 

estimated the relative weights of each by minimizing the land surface modeling errors using the 

Nelder-Mead method (1965) with autonomous procedures. This study finds that optimally 

merging precipitation while simultaneously minimizing any surface parameter error (soil 

moisture, temperature, runoff, or evapotranspiration) minimized errors in other LSM fluxes. 

Section 2 outlines the methodology, sections 3 and 4 present the results and discussion, 

and section 5 summarizes the conclusions. 
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2. Methodology 

Different precipitation datasets have been optimally merged by assigning different 

weights at each time step to each product with an autonomous process using the Noah LSM 

combined with the Nelder-Mead method to minimize modeling errors. The approach and 

methodology will be introduced in four subsections: (1) comparison of the merged precipitation 

products; (2) description of the study area and input model datasets; (3) the Nelder-Mead 

technique and optimization procedure; and (4) experiments performed to evaluate the capabilities 

of the methodology. 

 

a. Precipitation products 

Precipitation products were initially intercompared to delineate the differences in the 

amount of rain each produced in time and space. The intercompared products included  

1. TRMM 3B42, a microwave and infrared merged satellite-based product (Huffman 

et al. 2007);  

2. PERSIANN, a geosynchronous satellite-based product using long-wave IR imagery 

with a Artificial Neural Network-based technique (Sorooshian et al. 2000);  

3. NRL, a geosynchronous satellite-based product blended with passive microwave 

satellite data (Turk and Miller 2005);  

4. NCEP Stage IV, a gauge-corrected radar product (Fulton et al. 1998);  

5. RUC 20, model-based product (Benjamin et al. 2002);  

6. North American Land Data Assimilation System (NLDAS) precipitation data set, a 

gauge-based radar corrected product (Cosgrove et al. 2003).  
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Daily precipitation comparisons were carried out for the year 2006 using the following 

statistics: the annual cumulative precipitation, percentage of the precipitating bins (in this study 

defined as frequency), and the ratio of the annual cumulative precipitation amount to the percent 

of precipitating bins (a measure of intensity). In frequency estimations, events greater (smaller) 

than 0.1 mm day
-1

 precipitation were assumed to be precipitating (non-precipitating). For rain 

frequency estimation purposes, missing values assumed to have consistent rain frequency with 

the available data. However this assumption does not present any problem unless there would be 

any information available that missing days have significantly different rain characteristic than 

the non-missing data. 

 

b. Study area and the model datasets 

The Noah LSM simulations were performed from April 2006 to October 2006 over the 

well-studied Red-Arkansas basin area located from -107.0W to - 91.0W and 32.0N to 40.0N.  

All simulations in this study were forced by NLDAS data (temperature, wind, relative 

humidity, pressure, and radiation) where the precipitation was the only input data that varied 

among different runs. NLDAS precipitation was used to force the control runs to obtain 

reference values (considered to be “ground truths” solely for the purpose of this optimization 

experiment) that were used to estimate the errors of individual simulations and merging 

simulations. RUC20, TRMM, PERSIANN, NRL, and Stage IV products were utilized for 

individual simulations, and the merged product of these five precipitation data was used for 

optimization simulations.  

Initial conditions for all simulations were obtained after spinning up the model for five 

years using NLDAS forcing (including the precipitation) data. For the simulations forced by the 
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merged precipitation, in case any product had any missing data in any time-window, that product 

was not included in the simulation for that particular time window. On the other hand, for the 

simulations forced by individual precipitation products, missing values were assumed to be 0. 

Ignoring the missing data creates an artificial dry bias in these simulations; however, this does 

not affect the conclusions of this study.  

 

c. Nelder-Mead optimization process 

At each time step, the objective was to find the n optimum weights corresponding to each 

precipitation products; the sum of weighted precipitations (the merged precipitation), along with 

the other NLDAS data sets, used to force Noah model to estimate surface flux/states. Errors were 

calculated by taking the absolute value difference of these calculated surface parameters from the 

control run surface parameters. The only known value at each time step is the resulting error of 

the merged precipitation, where n weights are the unknown values to be found. Accordingly, the 

error minimization at each time step involves more unknown variables than the known, which 

makes the system highly underdetermined. To make the system determined or overdetermined, 

the weights were kept constant over a time-window, and the total error over this interval was 

minimized. 

The Nelder-Mead (1965) method was used to determine the optimum weights (Fig. 1). 

The weights are optimum in the sense that weighted sum of precipitation values result in the 

smallest simulation error at each time-window. To merge n different precipitation products, 2n+1 

initial sets of weights were created with the assumption that no one product was superior to the 

rest. Among these sets of weights, n+1 sets were created randomly (from 0 to 1) and the 

remaining n sets were created by assigning 1 to each product separately and assigning 0 to the 
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remaining products. Calculating the errors for each 2n+1 set of weights, the worst set (yielding 

the highest error) was replaced by a new set of weights. This replacement was performed by 

choosing α, β, and γ (reflection, contraction, and expansion) constants as 1.0, 0.5, and 2.0 

respectively as suggested by Nelder and Mead (1965). The replacement was repeated until either 

the desired accuracy (10
-7

) was reached or the maximum number of iterations (100) was 

achieved. Considering each initial random sets of weight would result in separate minima, this 

initialization process was repeated 50 times. Among these iterations and initializations, the set 

with the minimum absolute error was chosen as the final weights. After obtaining these optimum 

weights that give the desired accuracy, the Noah model proceeds to the next time-window where 

the same Nelder-Mead cycle is performed independently from the previous. 

The weights were constrained at any time-window in which their sum cannot exceed 1 and 

individual weights cannot become negative. These constrains were imposed with the assumption 

that all precipitation products were not biased at the same time.  

 

d. Experiments performed to evaluate the methodology 

Using synthetic ground truth data (i.e. the control simulation) provided more options for 

verification through additional variables. The performance of the methodology was evaluated for 

all land surface fluxes (total evapotranspiration, skin temperature, surface runoff, and volumetric 

soil moisture content) for four different scenarios. This provided a complete analysis rather than 

comparisons with limited in-situ ground measurements (e.g., soil moisture only) which in turn 

have inherent observational/sampling errors. In the first scenario we have evaluated the 

performance change due using different land surface parameters as truth. The second scenario 

assessed the benefit of adding more precipitation products. In the third scenario, the effect of 
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time-window width was explored. Last scenario investigated the impact of merging methodology 

with non-calibrated models. 

 

OPTIMIZATION VARIABLE EFFECT 

In the first experiment, optimization variable effect was explored with 5 separate sets of 

simulations constrained by top layer soil moisture, total evapotranspiration, surface skin 

temperature, surface runoff, and multi-objective errors, where multi-objective minimization was 

chosen as the normalized summation of the soil moisture, evapotranspiration, and temperature 

errors. The normalization of units was carried to prevent any parameter error to dominate the 

cumulative error. Normalization constants were chosen by setting the magnitude of the 

normalized annual cumulative errors equal for these 3 parameters for a chosen subset of 

simulations. After running these simulations, these constants were chosen as 1000, 40, and 1 for 

soil moisture, temperature, and evapotranspiration errors, respectively. For all simulations, errors 

were summed over time-domain and averaged over spatial-domain. 

 

MERGING BIASED PRECIPITATION PRODUCTS 

In the second experiment, the effect of merging biased precipitation products over the 

methodology was explored. Two artificially created precipitation products using random 

numbers and climatology also were merged along with the 5 precipitation products described in 

the first experiment. The rainfall frequency of the random precipitation product was taken from 

the NRL product where the magnitudes were assigned with absolute value of random numbers 

with normal distribution (0 mean and 10 variance). To avoid assigning artificial skill to the 

random product, ratio of rainy days (in this study defined as frequency) was not taken from the 
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truth (NLDAS) precipitation. Here, NRL was used; however, it could have been taken from any 

other product as well. Then random product was created by replacing the precipitation magnitude 

of NRL (for rainy days) with random numbers.  

On the other hand, the climatology precipitation product had the same annual cumulative 

precipitation with control (NLDAS) precipitation but was distributed equally over the entire year 

(~ 0.08mm hour
-1

). The results of merging these 7 precipitation products were compared with the 

optimization results obtained by merging 5 precipitation products.  

 

EFFECT OF TIME-WINDOW WIDTH 

In the third experiment, the effect of the time-window width was explored where the 

precipitation weights are estimated by minimizing the errors over this window. The window 

width was altered from 5 hours to 72 hours for 11 different scenarios to find the optimum 

interval with the smallest errors. In all scenarios, soil moisture was selected as the parameter to 

constraint the simulations where only 5 precipitation products were merged. The only difference 

between these 11 scenarios is the window width that the precipitation products are optimally 

merged. 

 

EFFECT OF MODEL CALIBRATION OVER MERGING METHODOLOGY  

In the fourth experiment, effect of model calibration over the merging methodology was 

investigated by changing the soil type parameterization of the model. The ground truth data were 

kept the same as previous simulations (obtained using soil type=2) where the merging and 

individual precipitation simulations were performed using soil type=1. As in the previous 
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experiments, the forcing data (except for the precipitation) were kept unchanged to assess the 

sensitivity of the total errors to model parameterization changes. 

 

3. Results 

Intensity comparisons were performed to determine the differences between precipitation 

products before merging (Table 1). The third row in table 1 shows the average amount of 

precipitation each product would have captured with the assumption that it rained continuously 

1% of the year (3.65 days) and each product had identified the event as precipitation. Two to 

three fold intensity differences exist between the satellite-based products (TRMM, PERSIANN, 

and NRL) and the model/gauge- and radar-based products (Table 1). In general, satellite-based 

products had a tendency to relate similar events to more precipitation amounts than the radar-

based product, whereas the radar-based product related similar events to more precipitation 

amounts than the gauge/model-based product. 

Regardless of the optimization parameter, merging precipitation data with the above 

described methodology gave smaller simulation errors than errors forced by individual 

precipitation products. The errors were not only smallest in the optimized parameter field, but 

also in the other fields (Table 2). There were two exceptions to this:  

1. The runoff simulation errors forced by RUC and TRMM products were smaller than 

the runoff errors of optimally merged simulations constrained by temperature; 

2. The total precipitation error, when optimally merged simulations constrained by 

runoff, was the highest among the simulations forced by individual precipitation 

products (Table 2).  
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The errors of evapotranspiration and temperature were lower when merged simulations 

were constrained by soil moisture than constrained by evapotranspiration and temperature, 

respectively. Optimization simulations constrained by soil moisture yield the smallest errors 

(except runoff).  As stated before and as expected, optimized simulations yielded better results 

for all parameters than the set of simulations forced by individual precipitation sources.  Runoff 

proved to be the most inefficient parameters to be optimized.   

Two artificially created precipitation (random number and climatology-based) products 

were merged together with the 5 observed precipitation products. Merging these 7 products not 

only resulted in smaller simulation errors than any model runs forced by individual precipitation 

products but also improved the errors compared with the simulations merging 5 products. 

Adding the artificial precipitation products improved the efficiency of the methodology in all 

fields that were tested (Table 3). This improvement can be explained by the “stop clock” analogy 

that a stop clock shows the time correct twice a day. Artificially created products were omitted 

by the methodology with imposing 0 weights when they don’t have any skill (which happens 

most of the time), and they slightly improved the results when they showed the truth just because 

of random chance (like the stop clock). On the other hand, the runoff errors of the simulations 

forced by climatological precipitation were the smallest among all runs. One possible 

explanation for this artificial skill could be the hydrograph differences between climatological 

and other precipitation products. For any of the precipitation products a temporally missed peak 

discharge would be counted twice (first one for missing the actual peak, second one for 

misguessing the peak) whereas the climatological product would have only a single peak error 

(not being penalized second time for misguessing the peak). 
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Cumulative errors were minimized over a time window where the total error depends also 

on the selected window width. Separate merging simulations constrained by soil moisture errors 

with various time window widths were performed to determine the optimum temporal width that 

leads to the smallest annual cumulative error. Five- to 8-hour window widths were found to 

generate the smallest LSM errors (Table 4) where in general the errors increased with the time 

window-width increase (Table 4). 

The merging method with a perfect parameterization scenario was evaluated where both 

simulations and reference (ground) truth were created using the same model parameters. To see 

the effects of the parameterization on the results, the soil type was changed to soil type-1 (coarse, 

loamy sand) in the merging simulations where the ground truth data were simulated by using soil 

type-2 (medium, silty clay loam). The soil-type change increased all the errors under this 

imperfect soil parameterization scenario (Table 5). The evapotranspiration, skin temperature, and 

soil moisture errors of the merging simulations remained smallest compared with the errors of 

simulations with individual precipitation sources. On the other hand, the errors in runoff and 

cumulative precipitation fields of the merging simulations were not improved with respect to the 

errors of the simulations forced by individual precipitation products. The soil parameterization 

change also resulted in smaller soil moisture errors for merging runs than the simulations with 

NLDAS precipitation (true precipitation), where the temperature, evapotranspiration, and runoff 

errors were still higher in the merging simulations. 

Cumulative weights were estimated from simulations that merge 5 precipitation products 

by minimizing the soil moisture errors at each time window (Fig. 2). Overall, RUC data 

cumulative weights were heavier than the other precipitation products. The cumulative weight 

trends in Fig. 2 were similar for other merging simulations with different optimization 
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constraints (figures not shown). In addition to this trend, cumulative weights also showed 

seasonality; in some seasons, some precipitation products were favored more than other 

products. For example, TRMM had the largest weights during April, May, and June, whereas 

RUC had the largest weight during July, August, September, and October.   

 

4. Discussion 

Similarities in precipitation characteristics among satellite-based products may not be 

obvious by looking only at the rainfall amount or only at the rainfall frequency. The intensity 

comparison analysis showed that satellite-based precipitation products have a tendency to assign 

heavier precipitation amounts on similar events than radar- and model/gauge-based products 

(Table 1). This result is: (a) consistent with Dai (2006) showing that models produce lighter 

precipitation than satellite data; (b) agrees with Sun et al. (2005) that models tend to precipitate 

too frequently even though they may have the same amounts; and (c) consistent with Tian et al. 

(2007) that satellite-based measurements detect stronger events than ground-based 

measurements. The intensity differences suggest that different platform (satellite, model, 

gauge/radar) precipitation products have unique characteristics, and their optimal merging could 

have a potential for a better modeling skill than any single product alone. 

Simulations that are forced by optimally merged precipitation and constrained by various 

parameters resulted in smaller errors than simulations forced by individual precipitation 

products. The knowledge of the true soil moisture information minimized errors better than other 

parameters. This could be due to soil moisture being more closely related to both water and 

energy balances with a land surface process memory than other parameters; that is, 
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evapotranspiration and runoff are fluxes, and they do not have any memory and temperature is 

not as directly related to water balance as soil moisture. 

Artificial precipitation products improved the land model simulations; merging 7 

precipitation products resulted in smaller errors than both merging 5 products and individual 

simulations in all fields. This improvement can be explained by the “stop clock” analogy that a 

stop clock shows the time correct twice a day. Artificially created products were omitted by the 

methodology with imposing 0 weights when they don’t have any skill (which happens most of 

the time), and they slightly improved the results when they showed the truth just because of 

random chance (like the stop clock). The runoff errors of the simulations using climatology-

based precipitation were an exception to this explanation (Table 3); they were the smallest 

among all runs. One possible explanation for this artificial skill could be the hydrograph 

differences between climatological and other precipitation products. For any of the precipitation 

products a temporally missed peak discharge would be counted twice (first one for missing the 

actual peak, second one for misguessing the peak) whereas the climatological product would 

have only a single peak error (not being penalized second time for misguessing the peak). 

Merging simulation errors increased as the window width was increased (Table 4). However, no 

clear threshold was found to conclude a window-width limit where the introduced merging 

algorithm skill would be diminished significantly. There is a tradeoff between the number of 

precipitation products to be merged and the window width (number of time-steps). Overall, 

merging more precipitation resulted in simulations with smaller errors (Table 3), whereas to keep 

the system from over-determined, a wider time window is needed; however, this reduces the 

accuracy of the methodology. Additionally, having same precipitation values among the merged 

precipitation products can reduce the dimensionality and cause the system to be locally 
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underdetermined. Hence, it is advised to have greater window width (number of time steps) than 

the number of precipitation products to be merged. Error sensitivity studies are needed before 

concluding an optimum number of precipitation products and/or concluding an optimum window 

width. 

Imperfect land model parameterization greatly alters the merging algorithm skill and the 

resulting errors. In the absence of a good model parameterization, perfect observations still 

resulted in high errors (Table 5). Well-calibrated models are essential for this optimal 

precipitation merging technique to be successful. 

Using synthetic ground truth data, merging simulations assigned heavier weights to RUC 

data (Fig. 2), perhaps owing to the similarity between the RUC and the NLDAS (control) 

precipitation intensities (Table 1). Although the merging technique does not have the knowledge 

of the true precipitation, it had associated heavier weights to the precipitation product that has 

similar precipitation intensity, amount, and frequency as the truth run. The resulting cumulative 

weights showed seasonality (Fig. 2) that TRMM had heavier weights in spring where RUC had 

higher weights in summer and autumn. This analysis also enables further accuracy assessment of 

different precipitation products in time. 

One of the limitations of this study is the model parameter saturation levels. Once the 

optimized parameter reaches the prescribed saturation level of the model, the assigned weights 

and the merged precipitation lose their meaning. For merging simulations that are constrained by 

soil moisture, this saturation happens frequently during the snowmelt period. Therefore, the 

simulations in this study were performed from April until October when soil moisture saturation 

is not an issue.  
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To analyze if the merged product can be used as a standalone precipitation product in 

hydrological models, further nonsynthetic simulations are needed. Nevertheless, using synthetic 

data, this study showed that any independent estimate of ground truth in any parameter can be 

translated into another flux/state by merging different precipitation data. It is important to stress 

here that the ground truth information is a critical element in this method. Given the current and 

future availability of relatively routine observations of some relevant land surface parameters 

(such as remotely sensed soil moisture, land surface temperature, evapotranspiration etc.), the 

presented methodology can be adapted to constrain the land surface model in order to improve 

the terrestrial water and energy cycle simulation skills as well as to compare the ability of 

different precipitation products to help improve the simulation skills in a land surface modeling 

framework. 

  

5. Conclusions 

Each precipitation dataset has its own advantages, limitations, and characteristic 

precipitation features (amount, frequency, and intensity). In this study, we have introduced a 

methodology to improve LSM water and energy balance skill by merging these independent 

precipitation estimates with the goal of preserving their advantages and minimizing their 

weaknesses with respect to LSM predictions. It has been found that optimally merging 

precipitation products minimized errors in all fields and resulted in smaller error than any 

individual product alone. Overall, minimizing the soil moisture errors improved LSM skills 

better than other parameters. The knowledge of true soil moisture is more important than other 

land surface parameters to improve land water and energy balances.  
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The effect of imperfect model soil parameterization on LSM skills was also examined. 

The precipitation merging methodology requires good model parameter calibrations to produce 

skillful simulations using observations. In the absence of good model parameterization, perfect 

observations still yield high errors. 
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FIGURE CAPTIONS 

FIG. 1. Schematic representation of the methodology. P1, P2, and Pn are the 1
st
, 2

nd
, and n

th
 

precipitation products to be merged and W1, W2, and Wn are the associated precipitation 

weights that vary for each time-window.
 

 

FIG. 2. Cumulative weights for 5 precipitation products merged by constraining the soil moisture 

error. 
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TABLES 

 

TABLE 1. Annual cumulative precipitation, precipitating pixel percentage (> 0.10 mm/hour), and 

precipitation intensity comparison for the year 2006 over the study area located from -107.0°W 

to - 91.0°W and 32.0°N to 40.0°N. 

 

  

                        RUC   TRMM   Stg IV   PERS.    NRL    NLDAS 

 

Precip (mm year
-1

)             630       610         682      1235      1007       722 

Precip > 0.1 (%)          15.9       5.7        11.4         9.1         9.6        18.9 

Precip (mm year
-1 

(%)
-1

)    39        107          60         136        105         38 

 

RUC = Rapid Update Cycle 20km precipitation product 

TRMM = TRMM 3B42 precipitation product 

StgIV = NCEP Stage IV precipitation product 

PERS = The PERSIANN (Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks) precipitation product 

NRL = Naval Research Laboratory (NRL) blended precipitation product 

NLDAS = North-American Land Data Assimilation System precipitation product 
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TABLE 2. Simulation errors of optimally merging simulation errors and run errors forced by 

individual precipitation products from April 1, 2006, to October 31, 2006. 

 

 

   Merged Precip. Optim. Parameter     Individual Precipitation Sources 

 

        Error Param.               Run.   Evap   Temp    SM    Multi      RUC  TRMM  PERS.   NRL  Stg IV 

 

Runoff  (mm)       15         21        39        21       20          24        36          67        84        41 

Evap  (W m
-2

)      30         24        29        16       20          39        40          47        45        38 

Temp    (°C)        0.63    0.49     0.49     0.26     0.40       0.74     0.84      0.93      0.90     0.78 

SM      (%)        0.036   0.030   0.036   0.013  0.022      0.05    0.051     0.06     0.057   0.049 

Precip  (mm)       278      185      133       99       154       212      228        267      264       202 

  

Note: Merging simulations were constrained by surface runoff, evapotranspiration, skin 

temperature, soil moisture, and multi-objective parameter error, while individual simulations 

were forced by RUC, TRMM 3B42, PERSIANN, NRL, and Stage IV separately. Each column 

above represents the errors of the simulation that were forced by either merged precipitation 

product or any of the individual precipitation products above. 
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TABLE 3. Simulation error comparison of optimally merging five precipitation products (Pnum5; 

merging RUC, TRMM, PERSIANN, NRL, and Stage-IV), merging seven precipitation products 

(Pnum7; five products and artificially created climatology and random precipitation products), 

and seven simulations that were forced by individual precipitation products from April 1, 2006, 

to October 31, 2006. 

 

 

   Merg. Precip.                          Individual Precipitations  

   

        Error Param.  Pnum7   Pnum5          RUC   TRMM   PERS.   NRL   Stg IV   Clim   Rand 

 

Runoff  (mm)      20            21         24         36          67         84        41          19        274 

Evap  (W m
-2

)     12            16         39         40          47         45        38          38         74 

Temp    (°C)        0.16       0.26             0.74       0.84      0.93       0.90     0.78      0.78     1.64 

SM       (%)       0.004    0.013            0.05      0.051     0.06       0.057   0.049   0.061   0.113 

Precip  (mm)       54            99               212       228        267       264       202       198     1082 

 

 

Merg. Precip.  = Merged Precipitation Product 
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TABLE 4. Simulation errors constrained by soil moisture that the model runs were forced by 

precipitation obtained by merging five precipitation at various window widths from April 1, 

2006, to October 31, 2006.  

 

 

               Time Window Width (Hours)     

   

        Error Param.       W5     W6      W7     W8     W9     W12      W18     W24      W36    W48    W72 

 

Runoff  (mm)    20.1   20.7     20.9    21.2    21.7     22.2      23.6       25.1      26.3     27.6     34.0 

Evap  (W/m
-2

)   15.6   16.0     16.2    16.5    16.7     17.2      18.2       18.5      19.3     20.4     23.8 

Temp    (°C)      0.25   0.26     0.27    0.27    0.28     0.29      0.32       0.32      0.35     0.37     0.43 

SM       (%)      0.013  0.013   0.013  0.014  0.014   0.015    0.017     0.018    0.019   0.021   0.027 

 

Note: WXX represents the temporal width of the time-window in hours that the errors were 

minimized. 
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TABLE 5. Simulation errors forced by different precipitation products, where the control 

simulations were run assigning soil type as 2 and were forced by NLDAS precipitation. Merging 

simulation errors constrained by soil moisture with merging five precipitation products. 

   

Soil-2                    NLDAS    Merged    RUC   TRMM   PERS.   NRL   Stg IV 

 

Runoff  (mm)      0.0            21           24         36          67         84         41    

Evap  (W m
-2

)     0.0            16           39         40          47         45         38           

Temp    (°C)        0.0           0.26        0.74       0.84      0.93       0.90     0.78       

SM       (%)       0.0          0.013       0.05      0.051     0.06       0.057   0.049    

Precip  (mm)       0.0            99           212       228       267       264       202      

 

   

        Soil-1           NLDAS    Merged    RUC   TRMM   PERS.   NRL   Stg IV 

 

Runoff  (mm)      15.4          20           19         21          26         29        22          

Evap  (W/m
2
)          7            34           41         43          47         47        40           

Temp    (°C)        0.73         0.91       1.08      1.15       1.16      1.16     1.10      

SM       (%)       0.086      0.052     0.104     0.108     0.084    0.082   0.101     

Precip  (mm)       0.0            99           212       228       267       264       202      

    

Note: In the above table, soil parameter was changed to soil-type 1 where the upper one had soil 

type 2. 
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FIGURES 

 

 

 

 
 

FIG. 1. Schematic representation of the methodology. P1, P2, and Pn are the 1
st
, 2

nd
, and n

th
 

precipitation products to be merged and W1, W2, and Wn are the associated precipitation 

weights that vary for each time-window.
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FIG. 2. Cumulative weights for 5 precipitation products merged by constraining the soil moisture 

error. 

 


